Tire-Road Friction Estimation based on Frequency Characteristics of In-Wheel Electric Drive System

Conference Paper - May 2015

5 authors, including:

- Long Chen
 Tsinghua University
 18 publications 56 citations
 SEE PROFILE

- Yugong Luo
 Tsinghua University
 85 publications 408 citations
 SEE PROFILE

- Zhaobo Qin
 Tsinghua University
 15 publications 32 citations
 SEE PROFILE

- Keqiang Li
 Tsinghua University
 156 publications 1,600 citations
 SEE PROFILE

Some of the authors of this publication are also working on these related projects:

- Internet of Vehicles- Study on Application of Internet of Vehicles Technology at Intersections View project

- Dynamics Modelling and Operating-instability Risk Identification of Driver-Vehicle-Road Closed-Loop System under Extreme Operating Conditions View project
Abstract
In-wheel drive systems which combine with the permanent magnet synchronous motors (PMSM) and tires are highly electromechanical-coupled. This paper studies the dynamic characteristics of this system to estimate the tire-road friction condition. After a dynamic tire model and a PMSM model is studied, a transfer function from control signal of the motor to the wheel dynamics is obtained. As a result of analyses about longitudinal dynamics in the frequency domains, motor-wheel resonance frequency is observed, which is related to the tire-road friction. Based on this feature, the friction estimation method combining a system identification technique to find dominant resonance frequency and recursive least square filtering, is applied for simulation. The simulation result shows that the proposed approach can detect road friction in the case that the tire is freely rolling, which is not sensitive to the noise and error of wheel speed signal.

Keywords: in-wheel drive, tire-road friction estimation, dynamic tire model, frequency characteristics

1 Introduction
Since the forces between the tires and road interface primarily determine the states of vehicle motion, the knowledge of tire-road friction can be extremely useful for many vehicle active safety control systems, including active roll control (ARC), direct yaw torque control system (DYC), adaptive cruise control system (ACC) and unified chassis control. Particularly, reliable estimation of friction coefficients at each wheel will enable both traction and stability control systems to provide optimum drive/brake torque to the individual wheels so as to maximize traction/brake performances, reduce wheel skid and enhance driving stability. Many researches on vehicle stability control have also proposed the explicit usage of tire-road friction information in determination of the desired yaw rate and other control system variables [1-2].

There are abundant literatures illustrating the state of art of tire-road friction estimation (TRFE), and several different approaches have been proposed, which can be classified into two categories: cause-based and effect-based. Some researchers try to detect factors that affect the friction coefficient, using optical camera, ultrasonic sensor or other sensors to detect road coverings (such as ice, snow, etc.) so as to estimate the friction coefficient [2]. Effect-based methods directly focus on the vehicle motion effects generated by the determinate control input under certain tire-road friction condition. The effects are shown in the tire as acoustic characteristic, tire-tread deformation and wheel slip. S. Hong, et al. [3] introduced a certain sensor that was fixed to the inner surface of the tire to observe tire deformation. However this method needed a specially equipped sensor and a signal transmitting apparatus. F. Gustafsson [4], and K. Hedrick [5] deemed that the slope between the slip
ratio and friction coefficient curve could give the information. But as the longitudinal tire force can’t be accurately estimated by using engine torque or braking pressure, tire forces should be set as measurement vector together with maximum friction coefficient, which makes the Jacobian matrix of the filter complex. As a result, computation load is added on the process of Kalman filter. Meanwhile, when the vehicle is in a normal driving situation, estimated slip ratio is small and sensitive to the noise of wheel speed signal, which results the low accuracy of friction estimation. In a word, there are some limitations about the slope-based method just using time-domain information. E. Ono tried to estimate road condition using the frequency characteristic of wheel speed signals during braking, but it can’t be suitable for the driving case [6-7]). M. Bartram found the influence of the tyre/road contact interface on driveline vibrations [8]. While vehicle is traveling, the angular velocity of the wheel can be considered as two parts, namely the high-frequency and low-frequency signals. Slope-based estimation accuracy depends on the tire force and slip ratio, and each parameter can be influenced by the high-frequency signal and static deviation of the lower one. For high-frequency signal, unlike the difficulty to accurately obtain the output torque of engine or braking pressure, in-wheel drive systems combined with PMSM can control and capture the wheel driving torque in high frequency, which may bring a chance to estimate the friction coefficient using high frequency information of wheel speed [9]. But a dynamic motor-wheel model needs to be studied.

This paper focuses on the dynamic characteristics of in-wheel drive system to estimate the tire-road friction coefficient. With a brief review of the traditional concept of longitudinal relaxation length and static tire model, a dynamic tire model for normal driving is introduced. After a PMSM mathematical model is studied, a transfer function from control signal of the motor to the wheel dynamics can be obtained. Then an insight into the longitudinal dynamics in the frequency domains is provided, after local linearization of the wheel spin equations coupled with analytical solution of the transient longitudinal slip formulation is considered. As a result of this analysis, the paper obtains the equation of motor-wheel resonance frequency which is related to the tire-road friction. Based on this feature, the friction estimation method which integrates recursive least square filtering and system identification technique, is proposed only using the information of motor current signal and wheel speed signal. The simulation result shows that the proposed approach can detect friction and it is not sensitive to the noise and sensor error of wheel speed and longitudinal velocity in the case that the tire is freely rolling. The paper is organized as follows. In Section 2 and 3, a dynamic tire model and a mathematical model of I-PMSM are established. Section 4 illustrates longitudinal dynamics in the frequency domains. Road friction estimation method is introduced in Section 5. Simulation results are presented and analysed in Section 6. Conclusions are given in the end.

2 Tire Model

2.1 Static slip/force models

For the sake of simplicity, only longitudinal motion will be considered in this paper. The dynamics of suspension dynamics, road slope and so on are also neglected. The simplified motion dynamics of a quarter-vehicle model is considered here.

The system is then described as the following form.

\[
\begin{align*}
me & - F_x - F_{e} \\
F_x & = 0.5C_{a}A_{n}v^2 \\
I\omega & = T_{d} - F_{R}
\end{align*}
\]

(1)

where \(m \) is \(1/4 \) of the vehicle mass and \(I, R \) are the inertia and radius of the wheel, respectively. \(v \) is the longitudinal velocity of the vehicle, \(\omega \) is the angular velocity of the wheel, \(T_{d} \) is the driving torque output from the in-wheel motor, and \(F_{R} \) is the tire/road longitudinal friction force.

The most common tire friction models used in the literature are those describing with algebraic slip/force relationships. Slip rate \(s \) is defined as

\[
s = \begin{cases}
\frac{R_{a} - v}{v} & \text{for braking} \\
\frac{R_{a} - v}{R_{o}} & \text{for driving}
\end{cases}
\]

(2)

One of the most well-known models of this type is known as the “Magic Formula” model [10]. This model has been shown to suitably match experimental data, obtained under particular conditions of constant linear and angular velocity.

\[
F_{x} = c_{i}\sin(c_{i} \arctan(c_{i} s - c_{i} (c_{i} s - \arctan(c_{i} s))))
\]

(3)

where \(c_{i}, \ i = 1-4, \) are the parameters characterizing this model. They can be identified by matching experimental data, as shown in [10]. Burckhardt [11-12] proposes a simple velocity-independent three-parameter model as follows:
This paper only focuses on the tire force when \(s \) is very small for the normal driving case. So Equation (4) can be simplified as

\[
F_i = k_i s + F_{o,i}
\]

Where, \(F_{o,i} \) is the offset at \(s = 0 \).

2.2 Dynamic tire model

For relatively low frequency and large wavelength transient and oscillatory vehicle motion, the effect of the finite length of contact patch may be neglected. Some researchers show that the dynamic reaction of the tire force to disturbances can be approximated well using the first order systems. The non-linear relaxation length-based model is used to describe the dynamic longitudinal force \(F_s^D \) derived from the steady longitudinal force \(F_s^L \) [13].

\[
\tau \dot{F}_s^L + F_s^L = F_s^L
\]

The time constant \(\tau \) can be derived from the relaxation length \(r_s \) as follows:

\[
\tau = \frac{r_s}{\nu}
\]

The relaxation length is the function of the slip ratio \(s \) and the wheel load \(F_s \), but the detailed function is too complex to be used in the simulation. Thus a 2-D look-up table revealing the relationship among the computed relaxation length, various values of \(F_s \), and \(s \) is presented in Figure 1 [14]. In this study, to minimize the complexity of the calculation process, the non-linear characteristics of the contact patch which is indicated by the speed difference between the leading and trailing part is ignored.

![Computed relaxation length characteristics](image)

Figure 1: Computed relaxation length characteristics

3 I-PMSM model

The following assumptions are made before establishing the mathematical model of I-PMSM:

1) Neglect the saturation of the electric motor ferrite core.
2) Neglect turbulent flow and hysteresis loss in the electric motor.
3) The currents in the electric motor are symmetrical three-phase sinusoidal currents.

In FOC algorithm, both the three-phase stator A-B-C coordinate system and the two-phase stator \(\alpha-\beta \) coordinate system are the static coordinate systems. While the d-q coordinate system is revolving, the transformations between these three coordinates are given,

\[
\begin{pmatrix}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
-i_d \\
-i_q \\
0
\end{pmatrix}
=
\begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-i_{\alpha} \\
i_{\beta} \\
0
\end{pmatrix}
\]

(8)

\[
\begin{pmatrix}
i_{\alpha} \\
i_{\beta} \\
0
\end{pmatrix}
=
\begin{pmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
i_{\alpha} \\
i_{\beta} \\
0
\end{pmatrix}
\]

(9)

where \(i_{\alpha}, i_{\beta}, i_q \) are \(\alpha \), \(\beta \) and \(q \)-axis armature currents, \(i_d, i_q \) are \(d \) and \(q \)-axis armature currents, \(i_d, i_q \) are \(\alpha \) and \(\beta \)-axis armature currents, \(\theta \) is rotor phase.

The torque of the PMSM is determined by \(i_d \) and \(i_q \),

\[
T_s = P_s(i_d L_q - i_q L_d)
\]

(10)

where \(L_d, L_q \) are \(d \) and \(q \)-axis inductances, \(P_s \) is number of pole pairs, \(\psi_a \) is permanent magnet flux-linkage, \(T_s \) is output torque.

In this study, a surface-mounted PMSM for which \(L_d = L_q \) equals to \(L_g \), is used. Hence Equation (10) can be simplified as:

\[
T_s = P_s i_d i_q = K_i i_q
\]

(11)

4 Frequency Characteristic

4.1 Transfer function Deduction

Assume that the driving torque includes two kinds of information, low frequency and high frequency, shown as follows.

\[
T_n = T_0 + T_L \sin(2\pi f \cdot t)
\]

(12)

where \(T_0 \) is a constant value, standing for the low frequency information, while \(T_L \sin(2\pi f \cdot t) \) is the high frequency information, \(T_L \) is the amplitude, \(f \) means the frequency.
After substituting Equation (12) into Equation (1), the tire dynamic function can be described as Equation (13).

\[I_{1}\ddot{\omega}+I_{1}\dot{\omega}+T_{1}\sin(2\pi f \cdot t)\cdot F_{p}^{\lambda} = \text{Equation (13).} \]

With the derivative on both sides of Equation (13), Equation (14) will be obtained as

\[I_{1}\ddot{\omega}+I_{1}\dot{\omega}+T_{1}\sin(2\pi f \cdot t)\cdot F_{p}^{\lambda} = \text{Equation (14).} \]

Then combine Equation (13) with (14) through multiplying Equation (14) by \(r \) and adding up to Equation (13)

\[I_{1}\ddot{\omega}+I_{1}\dot{\omega}+T_{1}\sin(2\pi f \cdot t)\cdot F_{p}^{\lambda} = \text{Equation (15).} \]

Considering the dynamic and static tire model (Equation (5) and (6)), the equation above can be simplified as

\[I_{1}\ddot{\omega}+I_{1}\dot{\omega}+T_{1}\sin(2\pi f \cdot t + \phi) = (k_{s} + F_{a})R \]

For the driving case, Equation (16) can be written as:

\[I_{1}\ddot{\omega}+I_{1}\dot{\omega}+T_{1}\sin(2\pi f \cdot t + \phi) = k_{s}Rv_{R} - v_{R} - F_{p}^{\lambda} \]

Differentiating Equation (17) with respect to time, it can be expressed as:

\[I_{1}\ddot{\omega}+I_{1}\dot{\omega}+2\pi f \cdot T_{1}\cos(2\pi f \cdot t)\cdot v_{R} = k_{s}Rv_{R} - v_{R} \]

In this paper, only the normal driving case is studied. The longitudinal vehicle speed is approximately equal to the wheel rotation speed multiplied by effective rolling radius. The derivative of the rotation speed is rather larger than the acceleration of longitudinal velocity, which can be treated as zero. Under these assumptions, Equation (18) can be rewritten as:

\[I_{1}\ddot{\omega}+I_{1}\dot{\omega}+2\pi f \cdot T_{1}\cos(2\pi f \cdot t + \phi) = k_{s}Rv_{R} - v_{R} \]

Assume:

\[T_{2} = T_{1}\cos(2\pi f \cdot t + \phi) \]

Equation (19) can be rearranged as:

\[I_{1}\ddot{\omega}+I_{1}\dot{\omega}+k_{s}Rv_{R} = 2\pi f \cdot T_{1} \]

With Laplace transform on both sides of Equation (21), it can be written as:

\[I_{1}d^2\lambda(\omega)+I_{1}\dot{\lambda}(\omega)+k_{s}Rv_{R} = 2\pi f \cdot T_{1}(\lambda) \]

Where, \(\lambda \) is the Laplacian operator.

Then, the transfer function from control signal of the motor to the wheel dynamics can be shown as:

\[T_{1}(\lambda) = \frac{I_{1}\lambda + I_{1}\dot{\lambda} + \frac{k_{s}Rv_{R}}{v_{R}}}{2\pi f \sqrt{1+(2\pi f)^2}} \]

(23)

But, in practical application, the current of the motor can be measured directly instead of the motor torque. So Equation (23) should be rearranged with Equation (11) as:

\[T_{1}(\lambda) = \frac{I_{1}\lambda + I_{1}\dot{\lambda} + \frac{k_{s}Rv_{R}}{v_{R}}}{2\pi f \sqrt{1+(2\pi f)^2}} \]

(24)

So the amplitude ratio between the current and the rotation speed is shown as:

\[\frac{A_{\lambda}(\omega)}{A_{\omega}(\omega)} = \frac{I_{1}\lambda + I_{1}\dot{\lambda} + \frac{k_{s}Rv_{R}}{v_{R}}}{2\pi f \sqrt{1+(2\pi f)^2}} \]

(25)

But the phase relationship between the current and the rotation speed cannot be extracted from Equation (24), due to the phase difference between \(T_{1}\sin(2\pi f \cdot t) \) and \(T_{2} \). After considering this difference, the phase relationship can be shown as:

\[\phi(\lambda) = \text{atan} \left(\frac{b}{c} - \frac{\pi}{2} + 2\pi k \right) \]

(28)

Where \(k \) is an integer.

4.2 Motor-wheel resonance frequency

4.2.1 Effect of longitudinal velocity

Figure 2 shows three amplitude ratio-frequency curves under different longitudinal velocities.

Figure 2: Amplitude ratio under different velocities*

*Parameters for this figure: \(\dot{\lambda}_{a} = 60000 \text{N} \); \(\dot{\lambda}_{d} = 0.5 \text{m} \); \(R = 0.3 \text{m} \); \(K = 6 \text{Nm/A} \); \(I = 1 \text{kgm}^2 \).

This figure implies that longitudinal velocity affects the curve shape even with identical longitudinal stiffness. But there is a peak point where three curves coincide together in Figure 2, which means it will be not influenced by velocity.
The frequency of the peak point is called as motor-wheel resonance frequency in this paper.

4.2.2 Motor-wheel resonance frequency

The motor-wheel resonance frequency cannot be obtained directly from Equation (24). From Figure 2, it shows that the empirical value of resonance frequency is over 10 Hz.

With this empirical value, approximate conversion can be made on Equation (25).

\[
\min \frac{\varphi (i)}{\varphi (0)} = \min \left(- \frac{1}{2} \pi 2 \right) + j \left(\frac{k R^2 - I_r \omega f}{v} \right)
\]

\[
= \min \left[- \frac{1}{K} \frac{2 \pi f}{v} \right] \left(\frac{k R^2 - I_r \omega f}{v} \right)
\]

After some mathematical deduction, motor-wheel resonance frequency can be expressed as:

\[
\omega_s = \frac{R}{2 \pi} \sqrt{\frac{k}{I_r}}
\]

(30)

Apparently, Equation (30) explains the regular patterns shown in Figure 2 that the motor-wheel resonance frequency is unrelated to velocity. \(R, I, r \) are considered as constants in an instant, so if the resonance frequency can be obtained, then the longitudinal stiffness \(k_s \) can be estimated by Equation (30). As described in Introduction, the longitudinal stiffness \(k_s \), namely the slope of \(F_s \) verse \(s \) curve, has a linear relationship to the friction coefficient. As a summary of this section, it is possible to estimate friction coefficient using the frequency characteristic of wheel and motor. Due to the characteristic of the motor-wheel resonance frequency which is unrelated to velocity, this idea of TRFE above can overcome the shortcoming of traditional method that is sensitive to velocity estimation error.

5 Frequency-based Road friction estimation

As discussed in Section 4, tire road friction coefficient can be estimated by the motor-wheel resonance frequency. So this paper proposes a estimating process as follows:

- **Step 1:** with system identification theory, the resonance frequency of the motor-wheel system is obtained;

- **Step 2:** based on Equation (30), tire stiffness is observed using the approach of recursive least squares (RLS);

- **Step 3:** as there is a linear relationship between longitudinal stiffness and friction coefficient, the latter one can be estimated by an equation which express this relationship.

The whole scheme of friction estimation is shown as Figure 3.

5.1 Resonance frequency finder

5.1.1 Problem formulation

In this paper, a problem to estimate a dominant frequency of motor-wheel system is considered. It is assumed that motor-wheel system can be described by a 2nd-order vibration system \(\Phi(z) \), shown in Figure 4.

\[
\Phi(z) = \frac{2}{2} - \omega \frac{z}{z} + \xi(t)
\]

(31)

From Figure 4, \(\Phi(z) \) is driven by white noise \(\omega(t) \), namely the current signal of the motor. Moreover, the measure time-series data \(\omega(t) \), namely the wheel speed signal, is contaminated by observation noise \(\xi(t) \) which is assumed to be white-Gaussian.

Then time-series data \(\omega(t) \) is expressed as:

\[
\omega(t) = \Phi(z) \omega(t) + \xi(t)
\]

Figure 3: scheme of road friction estimator

Figure 4: time-series modelling
5.1.2 Estimation procedure

In this sub-section, an estimation method of a dominant resonance frequency which incorporates system identification technique into time-series analysis is briefly summarized [15]. In this method, high-order time-series analysis is applied to the time-series model and the time-series data \(y(t) \), and the input is reconstructed from the high-order time-series model and time-series data \(y(t) \). Next, a band-pass filtering is applied to the reconstructed input-output data, then 2\(^{nd} \) order ARX(Auto-Regressive eXogenous) model is estimated by system identification theory. The resonance frequency is estimated from coefficients of denominator of the estimated ARX model.

The procedure of the method is summarized as follows.

Step 1: Fitting to AR model
Time-series data \(y(t) \) is fitted to a high-order (ex. 20\(^{th} \) or 30\(^{th} \)) AR model.

\(A(q)y(t)=w(t) \) \(\quad (32) \)

where \(w(t) \) is the driving white noise, and \(A(q) = 1+a_1q^{-1}+\ldots+a_\nu q^{-\nu} \).

By using the least-squares method, the estimate \(\hat{A}(q) \) is obtained.

Step 2: reconstruction of input data.
From \(y(t) \) and the estimated \(\hat{A}(q) \), \(\hat{w}(t) \) is reconstructed as follows.

\(\hat{w}(t)=\hat{A}(q)y(t) \) \(\quad (33) \)

Step 3: System identification with ARX model.
System identification is applied to the system whose input is \(\hat{w}(t) \) and output is \(y(t) \). As data pre-processing, a band-pass filtering whose band-pass includes the dominant resonance frequency of the system is applied to both input data and output data.

Then, 2\(^{nd} \) order ARX model

\(A_s(q)y(t)=B_s(q)\hat{w}(t)+\xi(t) \) \(\quad (34) \)

is estimated, where

\(A_s(q) = 1+a_sq^{-1}+\ldots+a_sq^{-\nu_s} \)

\(B_s(q) = b_1q^{-1}+b_2q^{-2} \)

and \(\xi(t) \) is the equation error.

Step 4 calculation of resonance frequency
Characteristic roots \(\lambda_i \) (\(i=1,2 \)) of \(A_s(q) \) are computed. Then the resonance frequency \(f_0 \) is estimated as

\[
f_0 = \frac{\sqrt{\Delta^2 - c_i^2}}{2\pi}
\]

(37)

where \(c_i \) and \(d_i \) are computed by

\[
c_i = \frac{\ln{[\text{Re}(\lambda_i)^2 + \text{Im}(\lambda_i)^2]}}{2\Delta} \quad (38)
\]

\[
d_i = -\frac{1}{2\Delta} \frac{\text{Im}(\lambda_i)}{\text{Re}(\lambda_i)} \quad (39)
\]

\(\Delta \) is the sampling time.

5.2 RLS-based tire stiffness estimator

By Equation (30), the slip slope \(k_s \) is determined by the resonance frequency.

According to the estimated resonance frequency, the slip slope can be estimated by the RLS method. The RLS method can be described by the following equation:

\[
x(t) = \Psi(t)\hat{\varepsilon}(t)+\varepsilon(t)
\]

(40)

where \(\varepsilon(t) \) is the estimated parameter, which is slip slope \(k_s \) in this research. \(x(t) \) is the square motor-wheel resonance frequency \(f_0^2(t) \) and \(e(t) \) is the error. \(\Psi(t) \) is the regression vector, which is

\[
\hat{R}^2 = \frac{R^2}{4\pi e^2 R_s^2}
\]

The RLS algorithm has the procedure as follows at each time step [16]:

Step 1: Get the measurement value of the system output \(x(t) \) and determine the regression vector \(\Psi(t) \).

Step 2: According to the difference between system actual output at present time step and the system output predicted in the previous time step, determine the error \(e(t) \):

\[
e(t) = x(t) - \Psi(t)\hat{\varepsilon}(t-1)
\]

(41)

Step 3: The update gain vector \(\Delta(t) \) can be calculated as:

\[
\Delta(t) = \frac{P(t-1)\Psi(t)}{\lambda + \Psi(t)^2 P(t-1)\Psi(t)}
\]

(42)

And the covariance matrix \(P(t) \) can be calculated by:

\[
P(t) = \frac{1}{\lambda}[P(t-1) - P(t-1)\Psi(t)\Psi(t)P(t-1)]
\]

(43)

Step 4: Update the estimated parameter

\[
e(t) = e(t-1) + \Delta(t)e(t)
\]

(44)

\(\lambda \) is called the forgetting factor, which is within the scope of (0.9, 1).
5.3 Road friction estimator
When the slip slope k_i is estimated, based on the experimental data in the simulation, the tire-road friction coefficient can be estimated by the following equation:

$$\mu_{\text{est}} = a_{\text{est}} k_i + b_{\text{est}}$$ \hspace{1cm} (45)

Where $a_{\text{est}} = 0.00001$, $b_{\text{est}} = -0.2$.

6 Simulation
Aiming at simulating the dynamics reactions of four-wheel-independent drive electric vehicle under different driving inputs, the wheels are disconnected from the engine in the CarSim model, while the torque signals output from the PMSM model in Simulink is input to the wheels in CarSim.

In this simulation, the motor torque demand is applied at the beginning as the following figure. The input traction torque is shown in Figure 5. The longitudinal stiffness is set as 60000N in the vehicle dynamics model, so the corresponding friction coefficient is 0.4. Other parameters are set as: $r = 0.5m$; $R = 0.3m$; $I = 1 \text{ kgm}^2$.

Figure 5 shows the actual vehicle velocity. At 5s, the motor torque is changing violently. However, longitudinal velocity only changes a little, which proves that the influence factors of velocity on the frequency response can be ignored, and the deduction procedure in Section 4.1 is reasonable.

Figure 7 compares different wheel speed data. The dot-dashed line is the data output from CarSim vehicle model, without noise and error. The line changes its shape along with the motor torque demand. The dashed line is the data output from CarSim vehicle model plus a constant error, which is used to check the sensitivity to wheel speed static error in estimation methods. Similarly, the solid line is the true wheel speed plus a white noise to check the sensitivity to the noise of wheel speed sensor. It can be seen that the true wheel speed is shaded by the noise.

Similarly, Figure 8 compares the estimated longitudinal stiffness of proposed frequency-based method and the well-known slope-Kalman-based approach under different signals. It shows that all the estimation results of frequency-based method which is proposed in this paper are acceptable for three cases, which indicates this method is not sensitive to sensor noise and unknown static error. As a comparison, even though there is no noise and error in the wheel speed signal, the well-
known slope-Kalman-based method cannot work well since it neglects the dynamic property of tire. For the dot-dashed line, at this time interval between 5s and 6s when the wheel speed is changing violently, the traditional approach even cannot work. It is also shown in this figure, that traditional method (slope-Kalman-based method) is sensitive to sensor noise and unknown static error.

To verify the robustness of proposed estimator stated above, fast Fourier transform [17] is introduced to get the amplitude of wheel speed for different frequencies, which is shown as Figure 9.

In Figure 9, it shows the amplitude-frequency curve with static error coincides exactly with the one with no error. However, the sensor noise has influence on the shape of the curve, but for the resonance frequency, only a little bias exists between two curves with and without noise. So this figure verifies the robustness of proposed estimator to the wheel speed noise and error. Combining the results of Figure 8 and 9, the equation of motor-wheel resonance frequency deduced in Section 4 is accurate to estimate the longitudinal tire stiffness.

Comparing Figure 9 and Figure 2, although the velocities are different, the resonance frequency shown in Figure 9 is the same with the one Figure 2 with \(k_s = 60000\text{N} \). It proves the discussion in Sub-section 4.2.1 that resonance frequency is unrelated to velocity, which can further verify correctness of the deduction procedure and the equation of motor-wheel resonance frequency. Also, the robustness of proposed estimator to velocity error and noise can be guaranteed by this feature of resonance frequency.

7 Conclusion

This paper tries to estimate the tire-road friction coefficient by considering the dynamic characteristics of in-wheel drive system. Combining dynamic tire model with PMSM mathematical model, a transfer function from control signal of the motor to the wheel dynamics can be obtained. Then an insight into the longitudinal dynamics in the frequency domains is provided. As a result of these analyses, motor-wheel resonance frequency, which is related to the tire-road friction, is observed. Based on this feature, a frequency-based road friction estimation method including resonance frequency finder and recursive least square is applied to simulation under a set of high frequency torque demands injected to the motor in MATLAB/Simulink. The simulation results show that the proposed approach can detect friction in the case that the tire is freely rolling only using the information of wheel speed signal.

Contribution of this paper:

- A transfer function from control signal of the driving motor to the wheel dynamics is obtained;
- Based on the feature of resonance frequency, a road friction estimation method only using the information of wheel speed signal is proposed, which is not sensitive to the noise and sensor error of wheel speed and longitudinal velocity.

This article only focuses on the small slip ratio case. The lateral motion as well as combined longitudinal/lateral dynamics are left for future investigation.
Acknowledgments
The authors are grateful for the sponsorship from the National Key Fundamental Research Program of China (Grant No. 2011CB711204).

References

Authors
Long Chen received the B.Tech. degree in automotive engineering from Jilin University, Changchun, China, in 2012. He is currently working toward the Ph.D. degree in automotive engineering at the Tsinghua University. His research interests include advanced control system design, observer design for nonlinear systems, system identification, and evaluation of automotive safety technology.

Mingyuan Bian received the B.Tech. and the Ph.D. degree from Beijing Institute of Technology, Beijing, China, in 1991 and 2003. And ever worked as a Postdoctoral fellow in Tsinghua University since 2003 to 2005. He is currently an Associate Professor with the Department of Automotive Engineering, Tsinghua University. He has authored more than 40 journal papers. He is the co-holder of 10 patent applications. His research interests include vehicle and electric vehicle dynamics and control.
Yugong Luo received the B.Tech. and M.S. degrees from Chongqing University, Chongqing, China, in 1996 and 1999, respectively, and the Ph.D. degree from Tsinghua University, Tsinghua, China, in 2003. He is currently an Associate Professor with the Department of Automotive Engineering, Tsinghua University. He has authored more than 80 journal papers. His research interests include vehicle and electric vehicle dynamics and control.

Zhaobo Qin received the B.Tech. degree in Department of Precision Instrument at Tsinghua University, China, in 2013. He is currently working towards the Ph.D. degree in automotive engineering at Tsinghua University. He is now doing research in hybrid electric vehicle and the powertrain system.

Keqiang Li received the B.Tech. degree from Tsinghua University, Tsinghua, China, in 1985 and M.S. and Ph.D. degrees from Chongqing University, Chongqing, China, in 1988 and 1995, respectively. He is currently a Professor with the Department of Automotive Engineering, Tsinghua University. He has authored more than 100 papers. He is the holder of 32 patents in China and Japan. His research interests include vehicle dynamics and control for driver-assistance systems and hybrid electrical vehicles.

Dr. Li has served as a Senior Member of the Society of Automotive Engineers of China. He was the recipient of the “Changjiang Scholar Program Professor” title and several other awards from public agencies and academic institutions in China.

Appendix

Table 1: List of symbols

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Meaning</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Effective rolling radius</td>
<td>m</td>
</tr>
<tr>
<td>m</td>
<td>1/4 of the vehicle mass</td>
<td>kg</td>
</tr>
<tr>
<td>I</td>
<td>inertia of the wheel</td>
<td>kgm2</td>
</tr>
<tr>
<td>v</td>
<td>longitudinal velocity of the vehicle</td>
<td>m/s</td>
</tr>
<tr>
<td>ω</td>
<td>angular velocity of the wheel</td>
<td>rad/s</td>
</tr>
<tr>
<td>T_d</td>
<td>driving torque output from the in-wheel motor</td>
<td>Nm</td>
</tr>
<tr>
<td>F_x</td>
<td>tire/road longitudinal friction force</td>
<td>N</td>
</tr>
<tr>
<td>F_{air}</td>
<td>Air drag force</td>
<td>N</td>
</tr>
<tr>
<td>C_D</td>
<td>drag coefficient</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>wind area</td>
<td>m2</td>
</tr>
<tr>
<td>ρ</td>
<td>Air density</td>
<td>kg/m3</td>
</tr>
<tr>
<td>s</td>
<td>slip ratio</td>
<td>-</td>
</tr>
<tr>
<td>c_i</td>
<td>$i = 1 − 4$, parameters characterizing this model</td>
<td>-</td>
</tr>
<tr>
<td>k_s</td>
<td>the slope of the F_x versus s curve at $s = 0$, or longitudinal stiffness</td>
<td>N</td>
</tr>
<tr>
<td>F_{x0}</td>
<td>the longitudinal force offset at $s = 0$</td>
<td>N</td>
</tr>
<tr>
<td>F_x^D</td>
<td>dynamic longitudinal force</td>
<td>N</td>
</tr>
<tr>
<td>F_s^D</td>
<td>steady longitudinal force</td>
<td>N</td>
</tr>
<tr>
<td>τ</td>
<td>time constants</td>
<td>s</td>
</tr>
<tr>
<td>r_x</td>
<td>relax length of tire</td>
<td>m</td>
</tr>
<tr>
<td>i_{a}, i_b, i_c</td>
<td>a-, b- and c-axis armature currents</td>
<td>A</td>
</tr>
<tr>
<td>i_{d}, i_q</td>
<td>d- and q-axis armature currents</td>
<td>A</td>
</tr>
<tr>
<td>i_a, i_b</td>
<td>a- and β-axis armature currents</td>
<td>A</td>
</tr>
<tr>
<td>θ</td>
<td>rotor phase</td>
<td>rad</td>
</tr>
<tr>
<td>L_d, L_q</td>
<td>d- and q-axis inductances</td>
<td>mH</td>
</tr>
<tr>
<td>P_n</td>
<td>number of pole pairs</td>
<td>-</td>
</tr>
<tr>
<td>Ψ_a</td>
<td>permanent magnet flux-linkage</td>
<td>-</td>
</tr>
<tr>
<td>T_e</td>
<td>output torque</td>
<td>Nm/A</td>
</tr>
<tr>
<td>k</td>
<td>Torque constant</td>
<td>Nm/A</td>
</tr>
<tr>
<td>T_0</td>
<td>a constant torque value</td>
<td>Nm</td>
</tr>
<tr>
<td>T_1</td>
<td>amplitude of high-frequency torque</td>
<td>Nm</td>
</tr>
<tr>
<td>f</td>
<td>frequency of high-frequency torque</td>
<td>Hz</td>
</tr>
<tr>
<td>a,b,c,ϕ,T_2</td>
<td>symbols used to simplify the</td>
<td>-</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Laplacian operator</td>
<td></td>
</tr>
<tr>
<td>(A(i_q))</td>
<td>amplitude of (i_q)</td>
<td></td>
</tr>
<tr>
<td>(A(\omega))</td>
<td>amplitude of (\omega)</td>
<td></td>
</tr>
<tr>
<td>(\varphi(i_q), \varphi(\omega))</td>
<td>phase of (i_q) and (\omega)</td>
<td></td>
</tr>
<tr>
<td>(k)</td>
<td>an integer</td>
<td></td>
</tr>
<tr>
<td>(f_0)</td>
<td>motor-wheel resonance frequency</td>
<td></td>
</tr>
<tr>
<td>(f_e)</td>
<td>fundamental frequency of PMSM</td>
<td></td>
</tr>
<tr>
<td>(v_0)</td>
<td>motor-wheel resonance velocity</td>
<td></td>
</tr>
<tr>
<td>(y(t))</td>
<td>time-series output data of wheel-motor system</td>
<td></td>
</tr>
<tr>
<td>(P(z))</td>
<td>The transfer function of wheel-motor system</td>
<td></td>
</tr>
<tr>
<td>(w(t))</td>
<td>the driving white noise</td>
<td></td>
</tr>
<tr>
<td>(\hat{w}(t))</td>
<td>Reconstructed input data</td>
<td></td>
</tr>
<tr>
<td>(A(q))</td>
<td>regression vector in “Resonance frequency finder”</td>
<td></td>
</tr>
<tr>
<td>(\hat{A}(q))</td>
<td>The estimated regression vector in “Resonance frequency finder”</td>
<td></td>
</tr>
<tr>
<td>(A_L(q), B_L(q))</td>
<td>The vector in 2nd order ARX model</td>
<td></td>
</tr>
<tr>
<td>(a_i)</td>
<td>Coefficients in (A(q))</td>
<td></td>
</tr>
<tr>
<td>(b_i)</td>
<td>Coefficients in (B_L(q))</td>
<td></td>
</tr>
<tr>
<td>(\hat{w}(t))</td>
<td>Reconstructed input data</td>
<td></td>
</tr>
<tr>
<td>(d_i, g_i)</td>
<td>symbols used to simplify the computation of (\hat{f}_0)</td>
<td></td>
</tr>
<tr>
<td>(\hat{f}_0)</td>
<td>The estimated resonance frequency</td>
<td></td>
</tr>
<tr>
<td>(\lambda_i)</td>
<td>characteristic roots of (A_L(q))</td>
<td></td>
</tr>
<tr>
<td>(\Delta T)</td>
<td>the sampling time</td>
<td></td>
</tr>
<tr>
<td>(\xi(t))</td>
<td>observation noise</td>
<td></td>
</tr>
<tr>
<td>(x(t))</td>
<td>output data in the RLS method</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon(t))</td>
<td>the estimated parameter in the RLS method</td>
</tr>
<tr>
<td>(e(t))</td>
<td>the error in the RLS method</td>
</tr>
<tr>
<td>(g(t))</td>
<td>regression vector in the RLS method</td>
</tr>
<tr>
<td>(K(t))</td>
<td>update gain vector in the RLS method</td>
</tr>
<tr>
<td>(P(t))</td>
<td>covariance matrix in the RLS method</td>
</tr>
<tr>
<td>(\chi)</td>
<td>the forgetting factor in the RLS method</td>
</tr>
<tr>
<td>(\mu_{\text{max}})</td>
<td>Road friction coefficient</td>
</tr>
<tr>
<td>(a_{\mu_{\text{max}}}, b_{\mu_{\text{max}}})</td>
<td>Coefficient in Equation (48)</td>
</tr>
</tbody>
</table>